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In electron diffraction patterns from smooth cleavage surfaces of single crystals, a sharp reflexion 
having a 'specular relation to the incident beam appears for all glancing angles of the incident 
electrons. Its intensity is especially enhanced when the reflexion happens to fall on a Kikuchi line. 

This reflexion has formerly been considered as a two-dimensional diffraction effect caused by the 
high absorption of electrons within solids. The present authors propose an interpretation accord- 
ing to the dynamical theory of diffraction, neglecting absorption; they take account of the fact 
that enhancement of the specular reflexion occurs when a Bragg reflexion in a side direction takes 
place inside the crystal. It is shown that the regular total reflexion of the incident electrons by the 
surface may take place even when the Bragg condition is not satisfied for the lattice plane parallel 
to the surface, and the phenomenon of enhancement can be explained as the result of Bragg re- 
flexion on a side plane. The total reflexion of the interior wave at the surface plays an important 
role in producing enhancement. It is noted that the proper choice of the wave points in reciprocal 
space is essential in this problem. 

The influence of the weak constituents of the internal wave field on the intensity of the specular 
reflexion is also discussed. 

1. Introduct ion  

In  the electron diffraction pattern obtained by re- 
flecting electrons incident at an arbitrary angle on 
the fresh cleavage plane of a well grown crystal, there 
appear many  Kikuchi lines, some Bragg spots and, 
besides, several circular arrays of reflexions which are 
as sharp as the spot of the incident ray. The circles 
are most easily noticed when the azimuth of the in- 
cident beam deviates a "little from some important  
zone axis of the crystal contained in the surface 
(Fig. 1).* The specular reflexion spot, which is geo- 
metrically the regular reflexion of the incident beam 
by the surface, is a member of the circular group 
corresponding to the innermost circle passing through 
the incident spot, and it possesses a well discernible 
intensity at any azimuthal  and glancing angle of 
incidence. 

On the basis of the kinematical  theory of diffraction, 
Kirchner & Raether (1932), Raether (1932), and Ki- 
kuchi & Nakagawa (1933a, b) regarded the circular 
group of spots as the result of the two-dimensional 
diffraction caused by the small penetrating power of 
electrons into the crystal. The positions of the spots 
are actually found to be in accordance with the geo- 
metrical relation given by the two Laue conditions for 

* We are indeb ted  to Dr. G. H o n j o  for Fig. 1. 

the two lattice rows lying in the plane parallel to the 
surface: 

(S-So.al)  = hi2, (S-So.as) = h22, (1) 

where al  and a2 are the vectors of the fundamental  
translations of the crystal lattice lying in the boundary 
surface, s o and s the unit  vectors of the directions 
of the incident and diffracted rays, 2 the wave length 
of the electron, and h 1 and h~ integers. 

I t  seems, however, difficult to explain by this simple 
theory the following phenomenon which was found 
by Kikuchi & Nakagawa (1933b), and was called by 
them 'the anomalous phenomenon of the second kind 
of rotation spectra':  the specular reflexion is anoma- 
lously enhanced to an intensity comparable to tha t  
of Bragg reflexions when the spot is traversed by a 
Kikuchi line; this occurs under suitable conditions of 
incidence. Fig. 2 shows an example of this effect on 
the cleavage face of zincblende. A similar example is 
contained in the paper of Kikuchi & Nakagawa. As 
will be explained in § 2, this phenomenon of enhance- 
ment is known to be correlated with the occurrence 
of a Bragg reflexion inside the crystal. Since such 
interaction between the specular reflexion and the 
Bragg reflexion cannot be treated by any kinematical 
theory, it is suggested that  an explanation of the 
specular reflexion, and of the circular group of spots 
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in general, must be sought in the dynamical theory. 
In  fact, the geometrical condition (1) is in accor- 

dance also with the dynamical theory. This theory 
assumes: 

(i) there exist within the crystal many diffracted 
waves whose wave number vectors kh are related 
to that  of the primary wave k0 by the relation 

kh = k o + h ,  (2) 

where h is the vector representing the point (hi, h~, ha) 
of the reciprocal lattice, namely, 

h=hlbl+h2b~+haba; (3) 

(ii) each of these waves is joined to a corresponding 
wave in free space so as to satisfy the condition of 
continuity of the tangential components of the rele- 
vant wave vectors. The relations (i) and (ii) imme- 
diately result in the condition (1) (Bethe, 1928; Thom- 
son & Cochrane, 1939; Laue, 1948). We can expect, 
therefore, that  the intensity of the reflexions satis- 
fying (1) may be calculated by the usual procedure of 
the dynamical theory. The ordinary Bragg reflexions, 
then, are considered as particular cases of these re- 
flexions. 

The interpretation of the circular group of spots 
on the dynamical theory does not, however, seem 
to have been attempted previously. The present paper 
is intended to explain the nature of these reflexions, 
especially of the specular reflexion, on the basis of 
this theory. 

2. Some exper imenta l  facts 

(a) Geometrical condition of enhancement 
As mentioned in § 1, the intensity enhancement of 

the specular reflexion takes place when it is traversed 
by a Kikuchi line. An important physical implication 
follows. 

In  diffraction photographs taken with the reflexion 
method, the pattern is in general limited towards the 
lower angle by the so-called shadow edge, which corre- 
sponds to the intersection of the surface plane of the 
crystal with the photographic plate. The lower half 
below the shadow edge cannot be seen on account of 

1 

Fig. 3. O: incident spot; H: specular reflexion; L: Bragg re- 
flexion; AB: shadow edge; 1, 1' and 2, 2': pairs of Kikuchi 
lines. 

the absorption of electrons within the crystal, but we 
can imagine the pattern which would be there if the 
crystal were transparent for electrons. Then, the pat- 
tern under the condition of the enhancement will be 
as shown schematically in Fig. 3, where the refraction 
of electrons at the boundary surface is neglected for 
the sake of simplicity. 

The specular spot S is located at the position sym- 
metrical to the incident spot 0 with respect to the 
shadow edge AB. From Fig. 3 it is seen at once tha t  
when a Kikuchi line 1 traverses the specular spot, 
another Kikuchi line 2, symmetrical to line 1 with 
respect to the shadow edge, passes through the incident 
spot, provided that  the surface is a mirror plane of the 
crystal lattice--not necessarily of the crystal structure. 
This condition is fulfilled by the cleavage surface of 
many crystals. 

The condition that  the incident spot lies on a Kibu- 
chi line is the same as the condition for the Bragg 
reflexion of the incident beam by the corresponding 
lattice plane. Therefore enhancement of the specular 
reflexion can occur if the incident electrons suffer a 
Bragg reflexion on a certain lattice plane, provided 
that  the boundary surface is a mirror plane of the 
crystal lattice. In general the lattice plane concerned 
is one which is not parallel to the surface, so that  
the corresponding reflexion may be called hereafter 
the Bragg re flexion in a side direction. This reflexion 
gives rise to a spot L on another Kikuehi line 2', which 
is parallel to the line 2, the two lines together forming 
a pair of black and white Kil~uchi lines corresponding 
to the lattice plane concerned. The spot L may lie 
either above or below the shadow edge. 

Experimentally, enhancement is especially remark- 
able when the wave of the Bragg reflexion in a side 
direction is expected to travel nearly parallel to the 
crystal surface, so that  L lies close to the shadow 
edge. Such a Bragg reflexion, however, will not neces- 
sarily appear in the actual diffraction pattern, even 
if L (drawn by ignoring the refraction effect) happens 
to lie above the shadow edge, because the refractive 
index of crystals for electrons is in general larger than 
unity (see § 5). 

Though the enhancement of the specular reflexion 
came first to our attention as the effect of its coin- 
cidence with Kikuchi lines, the role of the Kikuchi 
lines in the present phenomenon seems to be only to 
furnish a very convenient indication of the geometri- 
cal relation bvtw~vn thv incidvnt vlectr0n beam and 
the crystal, and no more. 

(b) Intensity variation of the specular reflexion with the 
change of glancing angle 

When a crystal is rotated in an electron diffraction 
camera about an axis contained in the surface and 
perpendicular to the incident electron beam, the spe- 
cular spot is found to move smoothly on a fluorescent 
screen or photographic plate with changing glancing 
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angle. I t  becomes especially bright at positions when 
Bragg reflexions occur on the lattice planes parallel 
to the surface. 

The specular reflexion is in general fairly weak in 
angular ranges between two successive Bragg reflex- 
ions, unless it is located close to the Bragg positions; 
its intensity varies only monotonously in the middle 
angular ranges so long as no phenomenon of the 
enhancement takes place. On photographs of the 
rotation spectra, we note a continuous faint streak 
joining successive Bragg reflexions of different orders, 
and this can be regarded as manifesting the intensity 
distribution of the specular reflexion with the glancing 
angle. The photographs show tha t  the intensity is 
asymmetric with respect to every Bragg spot: its 
decrease with distance from the Bragg spot is much 
slower for increasing than  for decreasing angles. This 
is seen in Fig. 4, which is obtained by subtracting 
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Fig. 4. Micro-photometer curve of the intensity distribution 
of the specular reflexion from a cleavage face (110) of 
zincblende, the general background being subtracted. Acce- 
lerating voltage, 46 kV. 0 is the glancing angle. 

the background on a micro-photometric curve of a 
rotation spectrum obtained on a cleavage face of 
zincblende. The same trend is also noticed in the in- 
tensity curve for a diamond crystal (Beeching, 1935). 

3. Genera l  p rocedure  of the dynamica l  theory 

A solution of the Schr6dinger equation for an elec- 
tron in a crystalline periodic potential V(r) with the 
energy E, 

8 ~ n  
~72~v + ~  (E+eV(r))v? = O, (4) 

is given by the Bloch function 

~p(ko) = ~v uh(ko) exp [ - 2 ~ i ( k  h. r ) ] ,  (5) 
h 

where h indicates the triple indices corresponding to 
the reciprocal-lattice point h, and the relation be- 
tween k o (the wave number vector of the primary 
wave within the crystal) and the kh's is as already 
given by (2). Each Bloch function, then, is determined 
corresponding to a given wave point in the reciprocal 
space. The coefficients uh's are determined, in their 
ratios, by the fundamental  equations of diffraction- 
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( u g - k ~ ) u h + 2 : '  vh, Uh-h' = 0, (6) 
where h' 

2me 2m (E+eVo), vn ~°~ = - ~  = - V -  v . -  (7) 

V o is the mean inner potential and V. the Fourier 
coefficient of the periodic potential V(r) (Bethe, 1928). 

The dispersion surface, or the surface of constant 
energy in reciprocal space, is determined by the com- 
patibility relation of the above homogeneous equa- 
tions. The surface is generally a hypersurface of in- 
finite degree, being periodic in reciprocal space. 

Let us now assume tha t  an electron wave with the 
wave vector I~  and the amplitude ~0 is incident on 
the upper boundary surface of a crystal slab of in- 
finite area and of finite thickness, where 

]K~I - V(2mE) 
h " (8)  

Then the possible wave points are given as the points 
of intersection of the dispersion surface with a line 
normal to the entrant  surface and at a distance from 
the origin of this space equal to the tangential com- 
ponent of K~. This line will be called hereafter the 
~ - ~ g r m a ~ .  

We discriminate the different 
mined by the above procedure by 

wave points deter- 
the index N (N -- I, 

II ,  . . . ) ;  the quantities relevant to the N-th wave 
point will also be indexed by N, e.g. u~, k0 ~, k~ etc. 
The amplitude krlnlh2 of the reflected wave of indices 
(hlhg), emerging from the upper surface according to 
the law (1) with the wave number vector Khlh2 , is 
expressed by 

N N 2Fhlh,~tthlh2 = ~rJo ~ Z (F00--~'a,h2h3)Uhlh~ha, (9) 
lVha 

where/'00 and/'h~h~ are, respectively, the normal com- 
ponents of K~ and Kh~h~, assumed to be positive, and 
~'nlh2ha is the normal component of khah2ha , assumed 
positive when the vector is directed downwards (Bethe, 
1928; Laue, 1948). Equation (9) serves to determine 
the intensities of the spots in the circular group in 
general, the Bragg reflexions being particular cases. 
The reflexion (00) corresponds to the specular re- 
flexion. 

In the ordinary t reatment  of the dynamical theory 
the intensity of a Bragg reflexion, say (h~h~h~), is 
calculated by assuming all of the waves ~hlh2 (except 
kYhl,h~,) to be vanishingly weak. In the present study, 
however, the wave ]/too should always be retained, even 
when it is fairly weak, since this wave is our main 
object. 

4. Choice of wave  points  

As is well known, the greater part  of the dispersion 
surface can be approximated by a group of spheres 
of radius u 0 around every reciprocal point; it deviates 
appreciably from the spheres only in the regions near 
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(a) (b) 
Fig. 5. The intersection of the dispersion surface and the v-normal. (a) The case h 1 ~= 0, h z ~= 0 and h s ----- 2. (b) The case 

hi= 0, h2= 0 and ha= 2. Each of the symbols O, O, [] and • represents the equivalent wave points. 

the intersections of two spheres. We denote each of 
these regions by  (h; h'}, where h and h' represent the 
triple indices of the reciprocal-lattice points at  which 
the two spheres have their centres. For the sake of 
simplicity, we disregard triple or multiple intersec- 
tions of the spheres. 

The number of possible wave points determined as 
the intersecting points of the dispersion surface with 
the v-normal is in general infinite. For instance, when 
the v-normal passes through the neighbourhood of the 
(000; hih~ha} region, the two real or complex wave 
points are determined there, but  since the reciprocal- 
lattice rows parallel to ba, which run perpendicular 
to the surface of the crystal, are parallel to the v-normal, 
this line passes also through regions (00n; hz,h~,hz+n} 
and (OOn;hl,h~,£3-t-n } (n = =El,+ 2, . . . ) ,  and deter- 
mines two wave points  in every region (Fig. 5). 

As discussed by Lamla (1938a, b, c), the Bloch func- 
tions corresponding to these infinitely many  wave 
points are not independent of one another. Since, 
as is seen from (5), the Bloch functions ~(ko) and 
~ (ko+h  ) represent the same state, it is apparent tha t  
the number of independent B10ch functions corre- 
sponding to the wave points on the v-normal passing 
through the (O00;hzh~.ha} region is confined to only 
four (Fig. 5(a)). When, especially, h 1 = 0 and h~. = 0, 
this number becomes two (Fig. 5(b)). For a rigorous 
treatment,  we have to make full use of all the inde- 
pendent Bloch functions. When, for instance, the 
Bragg reflexion in a side direction (hlh~ha) takes place, 
we have to choose four wave points properly on the 
v-normal passing through the {000; hzh~ha} region. 
The most convenient choice in  this case may  be 

such as shown in Fig. 6, in which the wave points 
I I I  A and A are selected at  the (000; hzh~hs} region, and 

A z~ and A rv at the (000 ;  hzh~3} region; O, H and H '  
are the reciprocal-lattice points (000), (lhh2h3) and 
(hzh2~3) respectively. 

The vector connecting a wave point to any of the 
reciprocal-lattice points represents  the wave number 
vector of a plane wave to be contained in the relevant 
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Fig. 6. Ray construction in reciprocal space. 
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Bloch function. These waves within the crystal are 
joined to the entrant  and emerging waves in the free 
spaces so as to satisfy the boundary condition, and, only 
when the wave points are chosen reasonably in the 
above-mentioned way, the amplitudes of all the waves 
are uniquely determined by the boundary relations 
and the fundamental  equations (6), as proved by Lamla. 

From (6), it is expected tha t  only the waves for 
which ~ ~ u0-k~ ~ 0 will have appreciable amplitudes, 
so tha t  when a wave point, say A ~ in Fig. 6, is in the 
closest neighbourhood of the {000; h~h~ha} region, 

only the two waves corresponding to A~O ~ k~ and 

A IH = k~ need to be retained as the strong waves relating 
to A ~. In Fig. 6, only the wave vectors of such strong 
rays for the four wave points are inscribed. The reci- 
procal-lattice points H and H '  are not in general in 
the plane determined by O and the ~-normal, so tha t  
the corresponding vectors are drawn as broken lines. 

The ray relation for the crystal slab can alternatively 
be represented as shown schematically in Fig. 7, where 

kLV\~ ~,,"/(c'Z' u \ x  -- ,, l,~',\\x, _//k~k' 

Fig. 7. 

Kh and K~ correspond to the (hi, h~) reflexions emerg- 
ing from the upper and lower surfaces respectively, 
K0 to the t ransmit ted wave in the lower space, and 
K o to the specular reflexion by the upper surface of 
the incident wave K~. The amplitudes of waves Kh 
and K 0 are given by (9). 

5. Phys ica l  considerat ion of the process  
of enhancement  

When the crystal surface is the mirror plane of the 
crystal lattice, the reciprocal-lattice point~ H and H '  
are symmetrically situated with respect to the plane 
which passes the origin 0 and is parallel to the crystal 
surface, so tha t  the wave vectors k~ and ko Iv, k0 n 
and k~ H, k~ and k~ v, k~ I and k~, ~, are at  least approx- 
imately in the relation of the regular reflexion with 
respect to the surface of the crystal slab. When, in 
addition, the surface is the mirror plane of the crystal 
structure, the forms of the dispersion surface near the 
{000; h~hgha} and {000; hlhgfza} regions are the mirror 
image of each other, so tha t  the relation of the above- 
mentioned regular reflexion becomes complete. 

Though all the waves within the crystal are actually 
the result of their dynamical interference, the essen- 

tial process of the phenomenon of the enhancement 
can be now understood by a qualitative reasoning as 
follows. 

The waves k~ and k~ are interpreted respectively 
as the Bragg reflexions by the (hlh2ha) plane of the 
waves k~ and k~0 I, so tha t  the amplitudes of the re- 
flected waves k~ and k{ I are large so long as the 
Bragg conditions for the relevant waves are satisfied 
fairly well. When the waves k~ and k~ I travel up- 
wards, impinging on the upper boundary of the crystal 
slab (the condition of the Bragg case), and the angles 
of their r ay  directions to the boundary surface, fli and 
fl~ respectively, are very small, then these waves are 
reflected efficiently by the boundary, resulting in the 
waves k~ v and k~ H. Since the surface is assumed to 
be a mirror plane of the lattice, the reflected waves 
k ~  and k~ H will necessarily receive in turn  the Bragg 
reflexion by the (~l]~2ha) plane, generating the waves 
k~ v and kI0 u. As the result of these processes it is to 
be expected that ,  under the assumed conditions, the 
amplitudes i ii , ,m and iv will be of compar- UO00, UO00, ~'000 UO00 
able order of magnitude with one another. I t  is 
then apparent that ,  under the conditions of enhance- 
ment, the amplitude W0o of the specular reflexion K o is 
almost entirely formed by  the waves k~ II and kI0 v. 
Analytically the amplitude ~oo follows from (9) as 

1 I I I I  I I  
V'oo = V'o {(Voo-rooo)Uooo+ (Voo- ooo)Uooo 

+ (Voo-r IoIo)uIo2+ (I'oo-rIjoo)U o o}, 

,i,i~ ,m, rv and the last two terms of where /'0o ~ r000, -r00o , 
the curly bracket, are the important  ones. 

The incidence of the waves k~ and k~ I towards the 
surface corresponds to the case of the incidence from 
a dense medium to a less dense medium; this makes 
the reflexion of these waves strong when the angles 
fli and fin become smaller than a certain critical value. 

Since we are dealing with the Bragg case there will 
be a narrow angular range close to the Bragg condi- 
tion wherein all waves in the crystal possess complex 
wave vectors, each of which corresponds to either an 
exponentially decreasing or increasing wave ampli- 
tude. For a slab of infinite thickness, however, only 
the decreasing waves, say l~, k~, kI0 H and k~ ~, should 
be retained in tha t  angular range. All the energies of 
the waves kI0 and k~ I are then transferred to the 
waves k~ and kI0 n, respectively. Moreover, if the angle 
fli between k~ and the surface is less than the critical 
value, all the incident energy of the wave K~ is trans- 
ferred to the wave K o in the end, and here we see 
a total  specular reflexion of the incident wave by 
the surface, even if its glancing angle is not especially 
small (Fig. 8). Though the total  reflexion is only the 
extreme case of the enhancement of the specular re- 
flexion, this occurrence is not rare, because the critical 
angle tic, which is given approximately by 

tic = V(eVo/E), (10) 
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is usually as large as of the order Of 1°. The experi- 
mentally observed intensity enhancement of the spec- 

~ / / / / / / / / / / / / / / / / / /  / /  / / ~ ' / / / / / / / / / / /  / / / / / / / /  

Fig. 8. 

ular reflexion is then explained as a result of such 
total, or nearly total, reflexion. 

6. Further  cons iderat ion of the p h e n o m e n o n  
of e n h a n c e m e n t  

In  the usual calculation of the intensity of a Bragg 
reflexion (e.g. Bethe, 1928; Thomson & Cochrane, 
1939), only two wave points, for instance A z and A n, 
are taken into account, and the other two wave points, 
A m and A Iv, are neglected. Such a treatment may be 
legitimate when the reflecting lattice plane is parallel 
to the boundary surface. In other cases it is a poor 
approximation unless the angles between the ray di- 
rections of the waves within the crystal and the sur- 
faces are fairly large. For the purpose of calculating 
the intensity of the specular reflexion, however, it is 
imperative to make use of the four wave points be- 
cause, otherwise, the waves such as k0 n1 and k ~  
which contribute most to the intensity of the specular 
reflexion cannot be introduced into the theory. 

The above explanation of the phenomenon of the 
enhancement, however, assumes that:  (i) the crystal 
surface is a mirror plane of the lattice, and the Fourier 
coefficients for (hzhgha) and (hzh,~a) are finite: (i_i) we 
are dealing with the Bragg case, namely the waves 
k[h and k~ travel towards the upper surface: (iii) the 
angles between the ray direction of these waves and 
the surface are sufficiently small; and (iv) only the 
waves relating to the reciprocal-lattice points 0 (000), 
H (hzhsha) and H '  (hzh~..~s) are retained as the strong 
w a v e s .  

Concerning these assumptions, it should be noted 
that  the condition (ii) is in general not always ful- 
filled. But even for the Laue case, where the waves 

k~ and Ic~ ~ravel downwards and all the wave points 
are always real, strong reflexions of these waves are 
expected to take place at the lower boundary surface; 
hence the phenomenon of the enhancement may ap- 
pear in a similar way to that  in the Bragg case. I t  is 
nevertheless quite doubtful if such consideration for 
the Laue case could retain any physical meaning com- 
patible with the experimental condition. For, in the 
first place, the crystal used in the actual experiment, 
or each of the mosaic blocks in it, is by no means 
the parallel slab assumed in the present theory. In 

the second place, the absorption of the electron waves 
which is neglected in the present theory will weaken 
the waves k~ and k~ z sufficiently by the time they 
reach the lower boundary, and the phenomenon of 
enhancement cannot arise. These difficulties in the 
Laue case are, however, met by the following consider- 
ation. 

The assumption (iv) will not be valid if the condition 
(iii) is satisfied and the structure amplitude for the 
first-order reflexion by the lattice plane parallel to the 
surface (whose indices will be denoted by (00s) or 
simply by s) is large, and if furthermore the corre- 
sponding spacing is not too small, which is usually 
the case. As pointed out by Artmann (1947), we must 
assume, under these conditions, the coexistence of new 
strong waves relating to the reciprocal-lattice points 
G(hzh2ha+s ) and G' (hz,h~,~3+~), where the sign + or - -  

is taken when the waves k~ and k~ I travel down- 
wards or upwards respectively (Fig. 9). Qualitatively 
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Fig .  9. R a y  c o n s t r u c t i o n  in r ec ip roca l  space.  

speaking, the new waves can be interpreted as the 
reflexions of the waves k~, k~, k~ n and k ~  by the 
lattice plane (008). 

Tn this circumstance, there are three strong waves 
relating to each wave point, so that  the t reatment  
becomes a little more complicated than for the problem 
of two strong waves, though, as is clear from the 
discussion given in § 4, the number of the necessary 
wave points remains four. I t  is important to note here 
the fact that  the distinction of the Laue and Bragg 
cases is now lost, because whether the waves k~ and 
k~ I travel upwards or downwards, their reflected 
waves travel correspondingly downwards or upwards 
(the waves k~_ s and k~_s and k~+s and kh~+s respec- 
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tively). But, in general, either of the two corresponding 
waves, for instance k~, and k I may be the stronger h+s, 
one according to the given conditions; we call the two 
cases the quasi-Laue or quasi-Bragg case respectively, 
according to whether the stronger wave travels down- 
wards or upwards. The problem discussed in § 5 on 
assuming the simple Bragg case, then, should now be 
treated again on the assumption of the quasi-Bragg 
case; but  it can be shown tha t  the general conclusion 
remains unaltered. 

There is, however, a more fundamental  difference 
between the results for the simple Laue case and the 
quasi-Laue case, because it can be proved tha t  an 
angular range wherein all of the four wave points 
are imaginary may  result also from the quasi-Laue 
case, not only from the quasi-Bragg case. 

:Fig. 10 shows the ray  scheme for the condition 
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when all the wave points are complex, so tha t  there 
remain only damped waves within the crystal. From 
this figure and a consideration similar to tha t  given 
in the previous section, we can readily understand 
how total  specular reflexion can take place in the 
quasi-Laue case as well as in the quasi-Bragg case. 
The assumption (ii), therefore, can be removed from 
the necessary condition for the phenomenon of en- 
hancement, when the role of the s-plane is taken into 
account. 

from an arbi t rary crystal by  averaging the potential 
field in the direction parallel to the surface. 

We assume as before tha t  the crystal is a parallel 
slab of thickness H. For the simplified crystal there 
exist only reciprocal-lattice points (00n) (n = . . . ,  
- 1 ,  0, 1, 2, . . .  ) corresponding to the lattice planes 
parallel to the boundary surface, whose spacing, of 
the lowest order, is d. The dispersion surface is then 
approximated by the circles around the reciprocal- 
lattice points (00n), and, following the considerations 
in § 4, we may  now choose only two wave points. The 
most convenient choice will be A z and AII (Fig. 11), 
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Fig. 11. Ray construction in reciprocal space. 

corresponding to the points of intersection of the 
v-normal with the circle around the origin (000). The 
wave vectors permit ted within the crystal are 

kin = kIo+n, i /d,  k~  = ko ~ + n .  i /d ,  (12) 

7. Inf luence of weak  ref lexions on the 
s p e c u l a r  r e f l e x i o n  

Though there exist within the crystal many weak 
waves besides the strong waves, the neglect of the 
weak waves seems to be harmless as far as the pheno- 
menon of enhancement is concerned. For, as shown, 
the enhanced specular reflexion owes its intensity al- 
most entirely to some strong waves travelling upwards. 
The enhancement, however, takes place only excep- 
tionally, so tha t  the specular reflexion is usually rather  
weak. When the pr imary wave is the only strong 
wave in the crystal, and hence the specular reflexion 
is weak, its intensity might depend more on the pre- 
sence of the weak waves. 

In  order to s tudy this, we will discuss a simplified 
model crystal whose structure is one-dimensionally 
periodic in the direction perpendicular to the boundary 
surface. The structure of this kind can be obtained 

where kI0 and k~ I correspond to the pr imary waves 
relating to the wave points A I and A ~, and i is the 
unit vector normal to the lattice plane, or the boundary 
surface. 

Let us denote the amplitudes of the pr imary waves 
kI0 and k~, which are assumed to be the only appre- 
ciable ones within the crystal, by cI0 and co ~ respec- 
t ively; then, from (6), the amplitudes of the weak 
waves can be expressed in terms of cI0 and c~ as 
follows (Bethe, 1928): 

c~ = . 2  7.I~ ~ 2 ~ - ~ I I 2  Co • ( 1 3 )  
~ 0  - -  t v ~  ~ 0  a ~ n  

~{/0 and Woo (the amplitudes of the impinging incident 
wave and of the specular reflexion, respectively) are 
related to the amplitudes of waves within the crystal 
by  the ordinary boundary conditions (Bethe, 1928; 
Laue, 1948) at  the upper surface as follows (the second 
equation corresponds to (9)): 
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1 i / ~o = ~ 2 ;  {(roo+rn)~+(roo+r~)~, 
~ 0 0  

1 I I I I  I 
~oo - 2roo2~. {(roo-~.)c.+(roo-~. 1~9, 

(14) 

where ~,~ and ~,~ are the normal components of 
k~, and k ,  n, respectively. Since at the lower boundary 
no waves enter the crystal, we have the boundary 
relation 

2 {(/'oo-r~)4 exp [2=ir~H] 
n 

~z [2ni~,~H]) = 0 (15) + ( P o o - ~ . ) c .  exp 

In  (14) and (15) the index n takes all negative and 
positive integers including zero. 

Now, we assume Poo ~ 70 (where 70 = ~Zo = -~'ZoZ), 
so tha t  [Poo-~'o[ is small compared with Foo+~o or 

V-n 'S 2/'oo. Also the ~ are assumed to be small 
9¢ 0 -- k n 

compared with unity. Neglecting the second-order 
small quantities, we find from (13), (14) and (15) the 
ratio r of the amplitudes of the incident wave and 
of the specular reflexion" 

~0o = ( 1 - - e x p  [4~i~,oH])/'oo--~o 
r --- ]1oo + ~'o (16) 

- . ~ '  ( 1 -  exp [4~i7oH +2~i(n]d)H]) ]-'oo + ~'o ~o-'~n n . 2 L I 2  ' 
.. 

where Z:' means to drop n = 0 from the summation. 
The ratio of the intensities of the two waves be- 

comes, after averaging over varying H, 

(too- ro to0- r~ v-. ~ 
= -- .~--7.z21 lrl~ \Poo + ro { ' / ' o o +  ro ~ o - , , . .  J 

(roo-   ? 
+ ~Foo + ~'o/- " \Foo + ~'o~o~--Y'~'- ,~ ~ 

(17) 

In  order to see the general trend of (17), it is con- 
venient to express it as a function of VE. sin O, where 
0 is the glancing angle of the incident ray  in free 
space. /'00, 70 and 7~ are given in terms of VE. sin 0 
in the following way: 

1~oo = K sin O = ~/~. ]/E. sin O ,  
~'o = no sin 0 = Va. )/(E sin s 0 + e Vo), 

r~ = /~ . / (E  sin~ 0+eVo) - n/d, 
~ bz~ (n/d)(2/o¢ ] / ( E s i n 2 0 + e V o ) - n / d )  

where 0 is the glancing angle of the pr imary ray  
within the crystal and c~ = 2m/h 9" . 

Fig. 12 exemplifies the result of a numerical calcu- 
lation of (17), wherein the values of d and the Fourier 
coefficient Vn, and consequently v,, are taken from 
the data concerning the cleavage surface (220) of 
zincblende crystal, namely we put  

d = dp~0 of zincblende = 1.92 A, 

Vn = ae V2n,2n,o of zincblende. 

The values of V~n,~,,0 of zincblende are given in Table 1 
in volts, calculated by using the atomic factors of 
zinc and sulphur atoms. V0, the mean inner potential, 
is put  as 12 volts according to the experimental value 
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Fig. 12. Calculated in tens i ty  d is t r ibut ion  of specular reflexion. 

Table. 1. Fourier coefficients (2n, 2n, 0) of the inner 
potential for zincblende 

n Vn (volts) 

1 7"14 
2 2-72 
3 1 "49 
4 0-94 
5 0.69 
6 0.49 
7 0.40 

(Yamaguti, 1934, 1939; Kikuchi & Nakagawa, 1934; 
Miyake, 1935). To obtain the curve A in Fig. 12, n's 
from - 3  to 7 were taken into the summation. The 
ordinate of the figure is shown on a logarithmic scale; 
E is measured in volts. The arrows shown above the 
abscissa indicate the positions of the Bragg reflexions. 

Near the Bragg angles the curve A shows the in- 
crease due to nearly total  reflexion ([r[~ = 1). The 
length of the strips shown below the arrows indicates 
the angular ranges of the total  reflexions. Of course 
the theoretical curve loses its meaning in the vicinity 
of the singular ranges on account of the approximation 
of the present theory;  we must confine our discussion 
to the middle ranges between successive Bragg re- 
flexions. 

The curve B in :Fig. 12 indicates 

Ir[ 9 = 2 {/'°°--~'°/~ (18) 
\Foo + 70/ ' 

which is the intensity of reflexion expected from a 
parallel slab having a uniform potential Vo, and this 
corresponds to the specular reflexion when the effect 
of all weak waves is neglected. On comparing the 
curves A and B, it becomes clear tha t  the dynamical 
effect of weak reflexions contributes to the intensity 
of the specular reflexion much more than  the mere 
jump of the mean inner potential at  the crystal sur- 
face, though the contribution of the lat ter  is not 
negligible at smaller glancing angles. 
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The above result cannot be compared directly with 
the experiment on account of its approximate nature, 
but  we notice the fact tha t  Fig. 12 seems to repro- 
duce the general trend of the experimental intensity 
curve shown in Fig. 4. The observed asymmetry  of the 
intensity distribution of the specular reflexion with 
respect to every Bragg angle is thus explained as the 
dynamical effect of the weak waves due to the exist- 
ence of the periodic field in the crystal. 

8.  G e n e r a l  r e m a r k s  

In  the preceding sections it has been shown tha t  
specular reflexion can be accounted for by the dyna- 
mical theory. We believe tha t  the whole circular group 
of spots may  be explained along the same lines. 

Though the geometrical positions of the spots can 
be explained in terms of the kinematical theory in- 
cluding absorption, this simple theory seems not to be 
capable of explaining the details of the intensity 
curve: especially, as mentioned before, the phenome- 
non of the enhancement can in no way be treated by 
the kinematical theory. 

Through the above theory of the phenomenon of 
enhancement, it is shown tha t  the electron wave can 
be total ly reflected by the crystal surface, even when 
the Bragg condition of the lattice plane parallel to 
the surface is not satisfied, provided tha t  (a) the Bragg 
reflexion in a side direction takes place, (b) the angle 
between its ray  direction and the surface is smaller 
than the critical angle tic, and, at  the same time, is 
of comparable order of magnitude to the Bragg angle 
corresponding to (00s), (c) the surface is the mirror 
plane of the lattice, and (d) the structure amplitude 
of (00s) is sufficiently large. 

The similar phenomenon, however, will never be 
expected to be observed for X-rays in spite of the 
close formal analogy of the dynamical theories for 
X-ray and electron waves. This is because the refrac- 
tive index of crystals is smaller than uni ty  for the 
X-ray wave in contrast with the case of electron, so 
tha t  there can be no total  reflexion of the X-ray 
waves inside the crystal at  the boundary surfaces. 

The present dynamical theory of the specular re- 

flexion is developed without assuming absorption. I t  
should therefore be regarded as a preliminary stage. 
The formal modification of the theory, however, will 
not be difficult when the phenomenological complex 
Fourier coefficients, as introduced by Slater (1937) 
and Moli~re (1939), are utilized. Absorption may have 
a considerable influence on the calculated intensity, 
but  further detailed considerations along these lines 
are not given here because the theoretical basis of 
the absorption of the electron wave is yet  not well 
founded. As to the phenomenon of the enhancement, 
the essential process, as explained in the former sec- 
tions, will not be changed by the absorption effect. 

The detailed calculation concerning the phenome- 
non of enhancement, which was not included in the 
present paper, will be reported elsewhere. 
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